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N =1 supersymmetric flow from the G2 symmetric point to the SU(3) × U(1) symmetric

point and supergravity gives a prediction of ± 1√
6

for the anomalous dimensions of the

operators that drive this flow. We examine these flows from the field theory perspective

but find that one is limited to qualitative results since N =1 supersymmetry in three

dimensions is insufficient to protect the form and dimensions of the operators involved in

the flow.
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1 Introduction

The field theory on M2 branes has always posed something of a problem in that in its

simplest, most supersymmetric formulation, it is necessarily strongly coupled [1]. As a

consequence, some of the non-trivial results about infra-red flows and fixed points in this

theory were first obtained via holography. It was known from much older work on four-

dimensional gauged supergravity [2] that the maximally supersymmetric (N = 8) theory

must have two non-trivial supersymmetric infra-red fixed points corresponding to massive

flows in the field theory. Some of these holographic flows were explicitly constructed in

gauged supergravity [3–7] and directly in M-theory [8] (see also [9–11] for more recent work).

More generally, there are quite a number of known supersymmetric compactifications of

M-theory that correspond to M2 brane configurations and might therefore be incorporated

into a web of RG flows that connect to the N =8 theory. While there were some interesting

parallels between the M2-brane theory and the compactification of N =4 Yang-Mills theory,

progress in this area was limited by the lack of a good field theory description on the

M2 brane.

Recently our understanding of the underlying M2-brane field theory has vastly im-

proved [12–18]. This theory may be understood in terms of an N =6 Chern-Simons-matter

theory in which the level, k, emerges from a Zk orbifold. That is, if one takes the com-

pactifying manifold to be S7/Zk, where the Zk acts on the Hopf fiber, then for k > 2 the

supersymmetry is broken to N = 6 and the R-symmetry is broken from SO(8) to SO(6).

The coupling of this field theory may be thought of as k−1, and so it is weakly coupled for
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large k. For k = 1, 2 the full N = 8 supersymmetry and SO(8) R-symmetry is preserved

(but not manifestly within the ABJM formalism) but the theory is strongly coupled. This

formulation has enabled one to re-examine and understand the supergravity flows from the

field-theory perspective [19, 20].

In this paper we will exhibit and study a family of N = 1 supersymmetric RG flows

using the maximally supersymmetric N =8 theory. This family is controlled by two infra-

red fixed points:

I A fixed point with N = 1 supersymmetry and a global G2 symmetry. The flow

corresponds to turning on a single mass parameter, with the remaining massless

bosons and fermions on the M2 brane transforming in the 7 of G2.

II A fixed point with N = 2 supersymmetry, a U(1) R-symmetry and a global SU(3)

symmetry. The flow corresponds to turning on two equal mass parameters, with the

six remaining massless bosons and fermions on the M2 brane transforming in the

3 + 3 of SU(3).

This family of flows is driven by two independent mass parameters arranged so that when

one of them vanishes the theory flows in a G2 invariant manner to fixed point I and when

they are equal the theory flows in a SU(3) × U(1) invariant manner to fixed point II. We

will show that the dominant fixed point is the “lower” fixed point, II. That is, the generic

flow with two unequal masses flows to fixed point II where the two masses become equal

and one only reaches fixed point I if one of the mass parameters is exactly zero. If one of

the mass parameters is tiny compared to the other then the flow can approach fixed point I

arbitrarily closely before diverting to fixed point II. There is also a flow directly from fixed

point I to fixed point II, and the supergravity gives a prediction of ± 1√
6

for the anomalous

dimensions of the relevant operators that drive this flow.

We also examine these flows using the field theory. Indeed, the N =2 supersymmetric

flow and fixed point has been extensively studied in [19, 20] and the results have been

matched directly with supergravity [21]. The field theory description of the family of

N = 1 flows is rather more qualitative. This is because the N = 2 flows are driven by F-

terms and are thus based upon operators whose dimensions and interactions are protected

by the U(1) R-symmetry. In the N = 1 flows, the action consists only of D-terms and

these generally undergo non-trivial renormalizations. We discuss the usual procedure of

integrating out the massive fields and find that it gives some reasonable qualitative results

that match the supergravity, but the N =1 supersymmetry limits the analysis significantly

and does not show that generic mass perturbations flow to fixed point II. It also remains

unclear how one might compute the anomalous dimensions of ± 1√
6

in the field theory. We

thus have supergravity predictions that pose an interesting challenge for field theory.

In section 2 we discuss the field theory underlying the family of N = 1 flows from

the N = 8 M2-brane theory and we present the dual supergravity analysis in section 3.

We summarize our results and conclude in section 4. Some technical details of superfield

expansions have been put in the appendix.
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2 An SU(3) invariant family of flows

We discuss a family of N = 1 supersymmetric flows away from the Bagger-Lambert-

Gustavsson (BLG) theory, triggered by masses for two real N = 1 superfields. It is im-

portant to state the caveat that by using the BLG theory, we are really studying two M2

branes: The gauge group of the BLG theory is SU(2)×SU(2) and so one is not exactly in the

large-N limit. Nonetheless, the intuition gathered from studying deformations of the BLG

action will prove to be confirmed in the gravity dual. It is also possible that some version

of these dual supergravity geometries will prove useful in more general ABJM theories.

It is also important to note that, for the class of supersymmetric flows we study here,

the supersymmetry will actually be completely broken in the general ABJM model. This

is because the generic ABJM theory has N =6 supersymmetry and an SO(6) R-symmetry

and it is only for an SU(2) × SU(2) gauge group with k = 1, 2 that this symmetry is

enhanced to N = 8. (The two extra supersymmetries transform as SO(6) singlets.) The

family of flows we consider here break the N =8 supersymmetry to N =1 while preserving

the SU(3) subgroup of SO(6). This means that our flows do not preserve any of the N =6

supersymmetries of the ABJM theories and preserve one (or both) of the two SO(6) singlet

supersymmetries. Thus we focus on the BLG theory for which our supersymmetries are

unbroken within the field theory.

2.1 The Bagger-Lambert-Gustavsson action in superspace

The BLG theory can be written in N = 2 superspace with manifest SU(4) × U(1) sym-

metry [19] and in N = 1 superspace with SO(7) symmetry [22]. One quirk of the BLG

formulation is that the gauge superfield Vab (which has a component Aµab) has to be con-

tracted in two different ways, and for this we define Va
b and V̂a

b:

Va
b = hacVcb , V̂a

b = f cda
bVcd . (2.1)

The tensor hac is the non-degenerate bilinear form associated with the three-alegbra and

the components of the tensor fabc
d are the structure constants of the three-algebra [15].

The apparently unusual fact that we need both of these contractions of the gauge field can

be understood by converting to an SU(2) × SU(2) gauge theory and re-writing the theory

in terms of bi-fundamental matter [17]. This description also requires the use of complex

combinations of the scalar superfields. The advantage of formulating the BLG theory as a

bi-fundamental gauge theory is that it leads to the ABJM generalization, which has gauge

group U(N) ×U(N). However the gauge index structure of these models, for N > 2, does

not allow for local holomorphic mass terms whereas the original BLG theory does allow

for such mass terms.

We therefore work with the BLG action:1

SBLG = k(SCS + Skin +W ), (2.2)

1We will always scale fields such that the level appears as a factor multiplying the whole action.

– 3 –
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where

SCS =

∫
d3xd4θ

∫ 1

0
dt tr

(
VDα

eitV̂Dαe
−itV̂

)
,

Skin =

∫
d3xd4θZa

Ae
−2V̂ZA,a,

W = − 1

24
ǫABCDǫ

abcd

∫
d3xd2θZA

a ZB
b ZC

c ZD
d + c.c . (2.3)

We can now decompose the N = 2 superspace expression above to N = 1 superspace. As

described in the appendix, the Z̃A fields are the N = 1 projections of the N = 2 superfields

ZA. Using the complex structure on the N =1 superfields

Z̃1 = Φ1 + iΦ2, Z̃2 = Φ3 + iΦ4 ,

Z̃3 = Φ5 + iΦ6, Z̃4 = Φ7 + iΦ8 (2.4)

we recover the SO(7) invariant description of BLG of Mauri-Petkou [22],

SBLG =

∫
d3xd2θ

(
− 1

2

(
DαΦI

b − ǫabc
dΓ

α
abΦ

I
c

)2 − 1

8
ǫabcd(DαΓβ

ab)(DβΓα cd)
)

−1

6
ǫcda

g ǫ
efgh(DαΓβ

ab)Γα cdΓβ ef − 1

24
ǫabcdCIJKLΦI

aΦ
J
b ΦK

c ΦL
d

)
. (2.5)

The tensor CIJKL is the self-dual SO(7) invariant tensor

CIJKL =
(
δ1234IJKL + δ5678IJKL + δ1256IJKL + δ3478IJKL + δ3456IJKL + δ1278IJKL (2.6)

−(δ1357IJKL + δ2468IJKL) + (δ2457IJKL + δ1368IJKL) + (δ1458IJKL + δ2367IJKL) + (δ1467IJKL + δ2358IJKL)
)
.

Written this way we can identify the first line in (2.7) as coming from the N =2 D-terms

in (2.2) whereas the second line in (2.7) comes from the F -terms in (2.2).

Recall from the appendix that the N =2 vector multiplet V contains an N =1 vector

multiplet Γα and an auxiliary real N =1 scalar multiplet R. The D-term contributions to

the superpotential are obtained by integrating out R.

More precisely, we can write the N =1 superpotential as:

W̃ (Z̃, Z̃) = − 1

24
ǫabcdCIJKLΦI

aΦ
J
b ΦK

c ΦL
d (2.7)

=
1

8
ǫabcdZ̃

A

a Z̃A
b Z̃

B

c Z̃B
d +

1

48
ǫabcdǫABCD

(
Z̃A

a Z̃B
b Z̃C

c Z̃D
d + Z̃

A

a Z̃
B

b Z̃
C

c Z̃
D

d

)
,

where, as described in the appendix, the Z̃A fields are the N = 1 projections of the N = 2

superfields ZA and the ΦI are the real components of the complex fields Z̃A. The first

(second) term in (2.7) comes from the first (second) line in (2.7) and thus come from

D(F)-terms of the N =2 action.

– 4 –
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Figure 1. The pattern of RG flows to the infra-red. Starting from the SO(8)-invariant fixed point

the theory flows to a G2-invariant fixed point only if one of the masses vanishes. If both masses

are non-zero, but not necessarily equal, then the theory flows to the SU(3) × U(1)-invariant fixed

point where the masses become equal. The two G2-invariant points are equivalent and there is a

flow directly from this fixed point to the SU(3) × U(1)-invariant fixed point.

2.2 The family of RG flows

We now consider the deformation of the BLG action by adding mass terms of the form:

∆WBLG =
1

2
m7 Φ2

7 +
1

2
m8 Φ2

8 . (2.8)

If we just give a mass to one of the fields (m7 = 0 or m8 = 0), then we preserve G2

symmetry. This is easily seen since the bosons are in 8v of SO(8) and the spinors are in 8s,

so giving a supersymmetric mass to one boson and one fermion will preserve the subgroup

G2. If we give an unequal mass to both fields, then the remaining symmetry is SU(3) and

if we give an equal mass to both fields the symmetry is SU(3)×U(1). With the extra U(1)

symmetry we preserve N =2 supersymmetry.

We find that the IR behavior of this family of flows is best studied through the gravity

dual and this is done in the next section of this paper. The picture that emerges is that

if one of the masses vanishes then the theory flows to a G2 invariant SCFT while for all

other values of (m7,m8) the theory flows to the unique SU(3) × U(1) invariant point. In

this sense the SU(3) × U(1) point is a basin of attraction for these flows.

Further, the gravity dual shows that there is a distinct RG flow from the G2 symmetric

SCFT to the SU(3) × U(1) point which preserves just SU(3) along the flow. Given that

such a flow lies at the boundary of the family studied here, one is led to conclude that

this flow is triggered by the second mass term however it is currently difficult to perform

a mapping of the operator spectrum in the field theory to the spectrum of supergravity

modes. Indeed, the anomalous dimensions predicted by the supergravity suggest that this

operator mapping will be rather non-trivial.

Whilst this detailed picture of the family of RG flows emerges from the gravity dual,

one can also get some intuition about the family of flows by studying the field theory. From

the explicit form of the N =1 superpotential (2.7) one finds that, when m7 6= m8, the usual

techniques of integrating out these masses is problematic. For example, if we set m7 = 0,

– 5 –
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then we can seemingly integrate out Φ8 to obtain:

WG2 ∼ (ǫabcdCIJK8Φ
I
aΦ

J
b ΦK

c )2 + ǫabcd
∑

IJKL6=8

CIJKLΦI
aΦ

J
b ΦK

c ΦL
d , (2.9)

which has terms quartic and sextic in the remaining seven fields. Since these fields trans-

form in the 7 of the unbroken G2, they must individually have equal dimension, and so one

might reasonably expect that the quartic and sextic terms to have different dimensions and

thus conclude that the resulting theory cannot be conformal. This is not quite accurate

since N = 1 supersymmetry in three dimensions has no R-symmetry. As a result one

cannot conclude that the dimension of monomials in the superpotential is simply the sum

of the dimensions of each component. We are thus left unable to determine the quantum

dimension of each term in (2.9) since this is a strongly coupled field theory. For the N =8

theory one can take k large and study perturbation theory however as mentioned already,

the flows considered here are only supersymmetric for k = 1, 2.

On the other hand, if m7 = m8 one has N = 2 supersymmetry and one can make a

field-theory argument that the RG flow terminates at a CFT fixed point in the IR [19].

Indeed, when one integrates out the Z4 superfield one ends up with the superpotential [19]:

WN=2 =

∫
d3xd2θ(ǫabcdZa

1Zb
2Zc

3)
2 . (2.10)

At this point we have a U(1)R symmetry and thus we know that the dimension of all three

complex fields ZA is given by:

∆Z = RZ =
1

3
. (2.11)

As explained earlier, if one re-writes this N =2 theory and flow in terms of N =1 superfields

then some terms in the N =1 superpotential come directly from the N =2 superpotential

whilst others are related to the N = 2 kinetic terms (D-terms). The former contain the

relevant operators that drive the flow while the latter, being related to kinetic terms of

fields that are frozen out, become irrelevant in the IR and are simply dropped.

One can use this perspective in thinking about flows with two non-zero and unequal

masses, m7 6= m8. There are various classes of monomials in the superpotential (2.7) before

mass terms are added: terms can be independent of (Φ7,Φ8), they can be linear or they

can be quadratic in these fields:

W̃ = gmngpqǫ
abcdZ̃

m

a Z̃n
b Z̃

p

cZ̃q
d

+ǫabcd
(
(Z̃1

aZ̃2
b Z̃3

c + Z̃
1

aZ̃
2

bZ̃
3

c)Φ
7
d + i(Z̃1

aZ̃2
b Z̃3

c − Z̃
1

aZ̃
2

bZ̃
3

c)Φ
8
d

)

+gmnǫ
abcdZ̃m

a Z̃
n

b Φ7
cΦ

8
d. (2.12)

where m,n, · · · = 1, 2, 3, and gmn is some Kähler metric. The quadratic terms, coming

from the final line in (2.12), prevent one from integrating out both Φ7 and Φ8 analytically.

However, it is precisely these quadratic terms in (Φ7,Φ8) that have the form Z̃4Z̃
4

and

that become irrelevant in the N = 2 flow. It therefore seems reasonable to assume that

– 6 –
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these may be dropped in the general family of flows. Indeed, if we ignore these terms and

integrate out (Φ7,Φ8) in W̃ + ∆WBLG we find:

Ŵ = gmngpqǫ
abcdZ̃

m

a Z̃n
b Z̃

p

cZ̃q
d

+h1

(
ǫabcd(Z̃1

aZ̃2
b Z̃3

c + Z̃
1

aZ̃
2

bZ̃
3

c)
)2

+ h2

(
ǫabcd(Z̃1

aZ̃2
b Z̃3

c − Z̃
1

aZ̃
2

bZ̃
3

c)
)2
. (2.13)

This contains terms that are quartic as well as sextic and the two parameters, h1 and h2,

are the remnants of the mass parameters. We are unable to argue purely from the field

theory that this should flow to a SCFT in the IR, however, the gravity dual suggests that

it will flow to the SU(3)×U(1) symmetric N =2 point. This implies that in the IR h1 = h2

and that the quartic terms become tied by N =2 supersymmetry to the kinetic terms for

the Z̃m fields.

The main reason for not being able to provide an argument purely from the field

theory for the phase structure of this family of flows is that in three dimensions, N = 1

supersymmetry has no R-symmetry and thus no chiral ring. However the main feature

of AdS/CFT is that the gravity dual can be used to study strongly coupled field theory,

and for the class of field theories considered here we will see that the gravity dual provides

much sharper information about the phase structure.

3 Mass perturbations in maximal supergravity

3.1 The scalars of gauged supergravity and their holographic duals

The SU(3)-invariant sector of gauged supergravity was studied long ago in [2, 21, 23]. In

terms of the complex 4-forms that parametrize the E7(7)/SU(8) of the maximal theory,

this six-dimensional sector may be parametrized as follows. Following [2, 23], introduce

complex coordinates, (z1, z2, z3, z4) on R
8 and define the real forms:

J± ≡ i

2

( 3∑

j=1

dzj ∧ dzj

)
± i

2
dz4 ∧ dz4 ,

F+
1 ≡ J+ ∧ J+ , F−

1 ≡ J− ∧ J− ,

F+
2 + iF+

3 ≡ dz1 ∧ dz2 ∧ dz3 ∧ dz4 , F−
2 + iF−

3 ≡ dz1 ∧ dz2 ∧ dz3 ∧ dz4 .

(3.1)

The forms F+
j and F−

j are, respectively, self-dual and anti-self dual. The SO(8) of gauged

supergravity acts on R
8 as the vector representation and there is SU(3) subgroup that

leaves all these forms invariant. There are also two U(1)’s in SO(8) that commute with

this SU(3) and rotate the zj → eiαzj , j = 1, 2, 3 and z4 → eiβz4. These U(1) actions can

be used to set F±
3 = 0.

These six four-forms may be viewed as defining six scalar fields in N =8 supergravity

and, as a sub-manifold of
E7(7)

SU(8) , they live in the coset

SU(1, 1)

U(1)
× SU(2, 1)

SU(2) × U(1)
, (3.2)

– 7 –
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where F±
1 defines the tangents to the first manifold and F±

2 and F±
3 define the tangents

on the second. We will parametrize the scalar manifolds using (complex) scalar fields by,

wj , j = 1, 2, 3, with the E7(7) components given by:

Σ =

3∑

j=1

(
Re(wj)F

+
j + i Im(wj)F

−
j

)
, (3.3)

whose exponential form, in terms of the coset (3.2), reduces to:

M1 = exp

(
0 w1

w1 0

)
, M2 = exp




0 0 w2

0 0 w3

w2 w3 0


 . (3.4)

The gauged supergravity theory in four dimensions contains 70 scalar fields, and these are

holographically dual to the (traceless) bilinears in the scalars and fermions:

OIJ = Tr
(
XI XJ) − 1

8 δ
IJ Tr

(
XK XK

)
, I, J, · · · = 1, . . . , 8

PAB = Tr
(
λA λB

)
− 1

8 δ
AB Tr

(
λC λC

)
, A,B, · · · = 1, . . . , 8 , (3.5)

where OIJ transforms in the 35s of SO(8), and PAB transforms in the 35c. The real parts

of wj can be thought of as the duals of OIJ for I, J = 7, 8 and the imaginary parts of wj

can be thought of as the duals of PIJ for I, J = 7, 8. The real and imaginary parts of the

scalar, w1, are separately invariant under distinct SU(4) × U(1) groups, which means that

w1 is dual to the following operator:

w1 ↔ (O77 + O88) + i (P77 + P88) . (3.6)

Similarly, F+
1 + iF+

2 is dual to Tr((X7 + iX8)2) and F−
1 + iF−

2 is dual to Tr((λ7 + iλ8)2).

Thus

w2 ↔ (O77 −O88) + i (P77 − P88) , w3 ↔ O78 + iP78 (3.7)

One can use the residual U(1) × U(1) invariance to diagonalize the fermion and boson

mass matrices and take w3 = 0. To get the G2 invariant critical point and flows one

takes w1 = ±w2, w3 = 0, while for the SU(3) invariant critical point and flow one takes

Im(w1) = Re(w2) = w3 = 0 [2].

3.2 The scalar action of gauged supergravity

To exponentiate the scalar matrices, it is convenient to use a polar parametrization and

take (for w3 = 0):

w1 = λ e−2iφ , w2 = 1
2 χ e

iϕ . (3.8)

After exponentiating one can write the matrices (3.4) in terms of the scalar fields:

ζ1 = tanhλ e−2iφ , ζ2 = tanh(
1

2
χ) eiϕ , (3.9)

– 8 –
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for which the supergravity Lagrangian [24] gives the kinetic term:

Lkin. = −
[
3
∇µζ1 ∇µζ1

(1 − |ζ1|2)2
+ 4

3∑

j=2

∇µζj ∇µζj

(1 − (|ζ2|2 + |ζ3|3))2)

]
, (3.10)

where we have restored ζ3 via symmetry. In terms of the polar representation one has:

Lkin. = −Kij (∇µψ
i)(∇µψj)

= −
[
(∂µχ)2 + sinh2 χ (∂µϕ)2 + 3

(
(∂µλ)2 + sinh2 2λ (∂µφ)2

)]
, (3.11)

where Kij is the metric on the scalar space with ψi = (λ, χ, φ, ϕ).

Following [6, 25–27],2 a superpotential can be extracted from the eigenvalues of the A1-

tensor that appears in the variation of the gravitino of the N =8 theory [24]. In the SU(3)

invariant sector there are two candidate eigenvalues3 [3] that are related by ζ2 → −ζ2.

Choosing one of these eigenvalues, we define the complex superpotential, W, by

W = (1 − |ζ1|2)−
3
2 (1 − |ζ2|2)−2

[
(1 + ζ3

1)(1 + ζ4
2 ) + 6 ζ1ζ

2
2(1 + ζ1)

]
. (3.12)

The supergravity potential on the SU(3) invariant sector [2] is then given by [3]:

P = 2 g2

[∣∣∣∂W
∂χ

∣∣∣
2
+

4

3

∣∣∣∂W
∂λ

∣∣∣
2
− 3 |W|2

]

= 2 g2

[
4

3
(1 − |ζ1|2)2

∣∣∣∂W
∂ζ1

∣∣∣
2
+ (1 − |ζ2|2)2

∣∣∣∂W
∂ζ2

∣∣∣
2
− 3 |W|2

]
. (3.13)

The real superpotential is given by |W| and one also has:

P = 2 g2

[(
∂|W|
∂χ

)2

+
1

sinh2 χ

(
∂|W|
∂ϕ

)2

+
1

3

(
∂|W|
∂λ

)2

+
1

3 sinh2 2λ

(
∂|W|
∂φ

)2

− 3 |W|2
]
.

(3.14)

This is a consequence of identities that come from the fact that W is holomorphic up to

an overall pre-factor:

∂φ logW − i sinh 2λ∂λ log

( W
|W|

)
= 0 , ∂ϕ logW + i sinhχ∂χ log

( W
|W|

)
= 0 . (3.15)

The superpotential has an SO(8)-invariant critical point, with N = 8 supersymmetry, at

ζ1 = ζ2 = 0 and with cosmological constant, Λ = −6g2. The SU(3)×U(1)-invariant critical

point, with N =2 supersymmetry is given by:

λ = λ2 ≡ 1

4
log(3) , χ = ±χ2 ≡ ± log

(√
3 − 1√

2

)
,

φ = φ2 ≡ 0 , ϕ = ±ϕ2 ≡ ±π
2

;

ΛSU(3) = −9
√

3

2
g2 ≈ −7.79423 g2 , (3.16)

2See also [28, 29] for relevant work on realizing holographic RG flows using gauged supergravity.
3The SU(3)× U(1) invariant sector is given by taking ζ1 to be real and ζ2 to be purely imaginary, and

hence these two eigenvalues are equal.
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with all possible choices of signs. In terms of the complex variables this corresponds to:

ζ1 = 2 −
√

3 , ζ2 = ± i(
√

3 −
√

2) . (3.17)

The G2-invariant critical point, with N =1 supersymmetry is given by:

λ = ±1

2
χ =

1

2
χ1 ≡ 1

4
log

(
1

5

(
1 + 4

√
3 + 2

√
2

√
3 +

√
3
))

,

φ = −1

2
ϕ = φ1 ≡ −1

2
ϕ1 ≡ 1

2
arccos

(√
3 −

√
3

2

)
;

Λ = −216
√

2 3
1
4

25
√

5
g2 ≈ − 7.19158 g2 . (3.18)

There is also a solution with χ → χ + π. The G2 critical points are given by ζ2 = ±ζ±1
1

for all choices of sign. The actual values of ζ1 are a rather unedifying mess.

3.3 The supersymmetric flow equations

To set up a supersymmetric flow one takes the four-dimensional metric to have the form:

ds21,3 = dr2 + e2A(r)
(
ηµν dx

µ dxν
)
. (3.19)

We take the Lagrangian of the scalars coupled to gravity to be:

L =
1

2
R − P + Lkin. . (3.20)

The supersymmetric flow equations are then obtained from the supersymmetry variations

of the fermions and one finds [3]:

dλ

dr
= ±

√
2 g

3
∂λ|W| , dχ

dr
= ±

√
2 g ∂χ|W| ,

dφ

dr
= ±

√
2 g

3 sinh2 2λ
∂φ|W| , dϕ

dr
= ±

√
2 g

sinh2 χ
∂ϕ|W| , dA

dr
= ∓

√
2 g |W| .

(3.21)

The equations for the flow of the scalars may be rewritten in terms of the scalar metric:

dψi

dr
= ±

√
2 gKij ∂|W|

∂ψj
, (3.22)

where Kij is the inverse of the metric Kij defined in (3.11). In terms of the complex

coordinates (3.21) become

dζ1
dr

= ± 2
√

2 g

3
(1 − |ζ1|2)2

∂W
∂ζ1

,
dζ2
dr

= ± g√
2

(1 − |ζ2|2)2
∂W
∂ζ2

. (3.23)

Given the cosmological constants of the three supersymmetric critical points, they suggest a

possible flow, by steepest descent from the G2 point to the SU(3)×U(1) point. One can see

graphically that this is possible. The superpotential, |W|, depends upon four variables and
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Figure 2. Plots of the function |Ŵ(χ, λ)| obtained by making the substitutions (3.24) into the

superpotential |W|. The left-right axis is χ and the other axis is λ. There are five critical points

visible and they are related by χ→ −χ. The SO(8) invariant critical point is the central minimum.

Moving away from this, the first saddle points are the G2-invariant critical points and the second

pair of highest saddles are the SU(3) × U(1)-invariant critical points.

the easiest way to see the critical points is to create a function of two variables, |Ŵ(χ, λ)|
by substituting the following into W:

φ = φ2 + (φ1 − φ2)
(χ2 − χ2

2)

(χ2
1 − χ2

2)
, ϕ = ϕ2 + (ϕ1 − ϕ2)

(χ2 − χ2
2)

(χ2
1 − χ2

2)
, (3.24)

where the χj , φj and ϕj are defined in (3.18) and (3.16). This substitution ensures that

the function |Ŵ| slices through the critical points of |W|. The result is depicted in figure 2.

There is a unique steepest descent on the superpotential |W| that goes from the SU(3)×
U(1)-invariant critical point to the G2 invariant critical point. One can also find a family

of steepest descent flows on |W| starting from the SU(3)×U(1)-invariant critical point and

descending ultimately to the SO(8)-invariant critical point. There is the direct descent,

which preserves SU(3)×U(1), and there are descents that approach the G2 invariant fixed

point first before turning down to the SO(8)-invariant critical point. Indeed one may

approach G2 invariant fixed point arbitrarily closely. These are depicted in figure 3.

The field theory flows are, of course, steepest descents on −|W| and therefore flow

in the opposite direction to the foregoing discussion. The G2 flow corresponds to tuning

m1 6= 0,m2 = 0, while the SU(3)×U(1) invariant flow corresponds to m1 = m2. From the

supergravity it is evident that if one has the G2 flow with m1 6= 0 and if one turns on a

small value for m2, then the flow is deflected to the SU(3)×U(1) invariant fixed point and

so m2 grows until m2 = m1. Generic flows out of all of the fixed points typically run off

to infinity, or “Hades,” and this simply means that the Coulomb branch is dominating the

infra-red end of the flow [25, 30]. The interesting new feature is that there is a “cone,” or

family, of flows bounded by the SU(3) × U(1) and G2 invariant flows and whose infra-red

limit is the SU(3) × U(1) invariant fixed point.
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Figure 3. This shows details of the contour plot of |Ŵ| in figure 2. Three steepest descent paths

shown: One going directly from the SU(3) × U(1)-invariant critical point to the SO(8)-invariant

critical point. Another goes from the SU(3) × U(1)-invariant critical point and passes extremely

close to the G2-invariant critical point before descending to the SO(8)-invariant critical point. The

third is a generic intermediate path between these extremes. The physical holographic RG flows

follow these trajectories in reverse. Note also that there is some relative distortion of the paths and

the contours because the paths represent numerical solutions on the complete superpotential, |W|,
while the contours are those of |Ŵ|.

3.4 Flows near the critical points

To understand the pattern of the flows around the three fixed points, it is instructive to

compute the scaling dimensions of the operators in the SU(3)-invariant sectors and see

how they govern the flows. This requires the linearization of the flow equations in the

neighborhood of the fixed points.

For the SO(8)-invariant fixed point, the polar coordinate system is singular and it is

more convenient to linearize (3.23) which, around ζj = 0, give:

dζ1
dr

≈ ±
√

2 g ζ1 + . . . ,
dζ2
dr

≈ ±
√

2 g ζ2 + . . . ,
dA

dr
≈ ∓

√
2 g + . . . . (3.25)

The canonical form of the AdS metric of radius L is to take:

A(r) = er/L , (3.26)

which means that modes are non-normalizable if they behave as:

e−∆r/L , ∆ ≤ 3

2
. (3.27)

For the flows (3.25) one has:

g = ∓ 1√
2L

, ζ1 = a1 e
−r/L , ζ2 = a2 e

−r/L . (3.28)
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for some constants aj , and so these modes are all non-normalizable. Thus they represent

mass insertions into the Lagrangian and not vevs of background fields. There is an ambi-

guity in the holographic dictionary if a field that has dimension ∆ has a supergravity mode

that scales as:

e−∆r/L or e−(3−∆)r/L . (3.29)

For the fermionic and bosonic mass terms one has ∆ = 2 and ∆ = 1 and these correspond

to (3.28) provided that the fermions and bosons correspond to different choices in (3.29).

One expects terms in the Lagrangian that are related by N =1 supersymmetry to have

scaling dimensions that differ by 1. One should note that, when this is translated through

the foregoing holographic dictionary, the dual supergravity scalars in a supermultiplet are

expected to have exponents that either differ by 1 or that sum to 2. The exponents in (3.28)

have the latter behavior.

In the neighborhood of the other two fixed points it is convenient to use the polar form

of the Lagrangian and linearize (3.22). Indeed, one obtains the canonical AdS metric, (3.26)

if one now takes

g = ∓ 1√
2L∗ |W|∗

, (3.30)

where |W|∗ is the value of the superpotential at the critical point and L∗ is the AdS radius

corresponding to the fixed point. The linearization of (3.22) is then

dψi

dr
= − 1

L∗
Mi

k (ψk − ψk
0 ) , Mi

k ≡
(
Kij

|W|
∂2|W|
∂ψj ∂ψk

)

∗
, (3.31)

where ∗ denotes the value at the critical point. Therefore, we need the eigenvalues of the

matrix Mi
k.

At the SU(3) × U(1) invariant fixed point the eigenvalues of Mi
k are:

(
1

2

(
1 −

√
17
)
,
1

2

(
3 −

√
17
)
,
1

2

(√
17 + 1

)
,
1

2

(√
17 + 3

))

≈ (−1.56155,−0.561553, 2.56155, 3.56155) , (3.32)

and at the G2 invariant fixed point the eigenvalues of Mi
k are:

(
1 −

√
6, 1 − 1√

6
,

(
1√
6

+ 1

)
,
(√

6 + 1
))

≈ (−1.44949, 0.591752, 1.40825, 3.44949) . (3.33)

Note that at each point the eigenvalues come in pairs that add to 2, consistent with

N = 1 supersymmetry. Negative eigenvalues correspond to irrelevant operators that flow

into the fixed point in the infra-red. There is one such operator for the G2-invariant

point, corresponding to the flow from the SO(8) invariant fixed point. There are two such

operators for the SU(3) × U(1) point and these correspond to the family, or cone, of flows

that arrive at the SU(3) × U(1) point from the SO(8) point. The positive eigenvalues

correspond to relevant operators or to vevs that drive the flow away from the fixed point

in the infra-red. The two positive eigenvalues at the SU(3) × U(1) point are greater than
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3
2 , which means the modes are normalizable and therefore correspond to perturbations of

the state of the system. Based upon the experience of [25, 27, 30], it seems reasonable to

expect that they correspond to some form of Coulomb branch flow.

At the G2 point there are three positive eigenvalues. One of them is normalizable and

presumably corresponds to a Coulomb branch flow but, in contrast to the analogous situa-

tion in four-dimensional Yang-Mills theory, the scaling dimension is greater than 3 and so

this “Coulomb flow” is being driven by the vev of an irrelevant operator. More interesting

are the two other eigenvalues, 1 ± 1√
6
, which correspond to non-normalizable modes, and

hence must represent perturbations of the Lagrangian. Note that these eigenvalues sum

to 2 and thus may be interpreted as supersymmetric counterparts of one another. Indeed,

they must represent the fermionic and bosonic mass terms that generate the N = 1 su-

persymmetric flow from the G2 point to the SU(3) × U(1) point. Supergravity therefore

predicts the dimensions of the corresponding operator to be 1± 1√
6

and 2± 1√
6
, and hence

there is an anomalous dimension of ± 1√
6
. It is interesting that the dimensions are not

rational, but this is entirely possible since there is no continuous R-symmetry to protect

operator dimensions. It would be most interesting to see if there is a way to compute these

relevant operator dimensions directly within the field theory.

4 Final comments

We have studied the field theory on a stack of membranes by deforming the theory with

mass terms. The specific mass terms we considered trigger flows that terminate at super-

conformal Chern-Simons matter theories in the IR. The phase structure of the general flow

in this class is hard to study directly in the field theory since only N =1 supersymmetry

is preserved. Nevertheless our study of the gravity dual provides a compelling description

of these flows.

The remaining challenges directly related to this family of flows lie in the field theory.

For instance, simply calculating the dimension of operators at the G2 symmetric point and

comparing them to the supergravity spectrum would be an important achievement since

there is no holomorphy in the field theory and it is strongly coupled.

There are many other N =1 supersymmetric mass terms that can be considered and

it would be interesting to study these using holography. One particular class of these

flows involves an equal mass term for all four complex scalars and was considered from

the gravity point of view [31–33] and from the field theory point of view [34, 35]. A

related, non-holomorphic mass deformation was studied in [36]. This flow preserves sixteen

supercharges and has a number of isolated vacua; it remains unsolved how to count these

vacua correctly from the field theory. The difficulty in studying these mass deformations

in the ABJM model is the same difficulty we have encountered in the current work, namely

that the mass terms preserve the supersymmetry which is not manifest in the ABJM model.

There are also flows with equal mass terms for two complex scalars and preserving eight

supersymmetries. These have been studied in [37, 38] and can be considered as the analogue

of the N =2∗ mass deformation of N =4 SYM in four dimensions [39], which flows to large-

N Donagi-Witten theory [40]. Another family of flows that has not been examined closely
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in supergravity is the deformation with equal masses for three complex scalars. This should

also preserve SU(3)×U(1) symmetry but should not terminate at an SCFT. This high level

of symmetry should also be sufficient to make it amenable to study from the supergravity

perspective, perhaps even calculating the full eleven-dimensional solution. Moreover, the

corresponding field theory should be related to the compactification to three dimensions

of N = 1∗ Yang-Mills theory, obtained by giving masses to the three chiral multiplets in

N = 4 Yang-Mills theory. The corresponding field theory in (2 + 1) dimensions has been

extensively studied and used to compute exact elliptic superpotentials [41, 42]. Given the

new developments in the field theory on the M2 branes it would be very interesting to

revisit these earlier results and see how they are related via massive flows.

It would also be very interesting to uplift the RG flow solutions that we found in four-

dimensional gauged supergravity to eleven dimensions. This has been already done for the

N = 2 flow which corresponds tom1 = m2 in [8]. It is well known how to uplift the metric of

solutions to four-dimensional N = 8 gauged supergavity to eleven dimensions [43], however

the techniques for finding the internal fluxes are rather cumbersome [44]. One of the non-

trivial features of the solution in [8] is the presence of internal four-form flux and one can

expect that such flux will be present for the whole SU(3) invariant family of flow solutions

discussed here. The solutions with m1 6= m2 will have also smaller internal symmetry group

and less supersymmetry which makes the eleven-dimensional uplift a non-trivial task.

In terms of string compactifications, AdS4 vacua are phenomenologically interesting

for many reasons. It would be interesting to develop a better understanding of such back-

grounds which preserve only two supercharges and the dual three-dimensional field theory

is presumably a useful place to perform such studies. As such, N =1 CS-matter theories,

like the ones studied in this paper, may be an appropriate place to start.
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A Projecting N =2 to N =1 superspace in three dimensions

Here we summarize some aspects of how to break up the three-dimensional N =2 superfields

into N =1 superfields, a complete description is given in [45, 46]. This is useful as it allows

one to consider an N =2 action and add N =1 preserving operators to it.

The complex spinor of N = 2 superspace is decomposed as4 θ = θ1 + iθ2 and to

reduce the action to N = 1 supersymmetry we integrate out the θ2 dependance. First we

4The irreducible spinor θα in three dimensions has two real components but often its complex counterpart

with four real components is also denoted θα. We hope this will not cause too much confusion.
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decompose the N = 2 differentials in terms of N =1 differentials

Dα =
1

2
(D1α + iD2α), D

α
=

1

2
(Dα

1 − iDα
2 ). (A.1)

This allows us to write the superspace N =2 measures in a way which then facilitates the

reduction of the action to N =1 superspace
∫
d3xd4θ = −

∫
d3xD2

1D
2
2 ,
∫
d3xd2θ =

∫
d3xD2

1 . (A.2)

Then the N =2 fields reduce to N =1 fields as

Z|θ2=0 = Z̃ , Z|θ2=0 = Z̃,V|θ2=0 = 0 D2αV|θ2=0 = Γα, D2
2V|θ2=0 = R (A.3)

where Z̃ is a complex N =1 scalar superfield and R is real N =1 scalar superfield. Since

N =1 superspace is real, we can break a complex scalar superfield into real and imaginary

parts and in section 2 we used the complex structure

Z̃1 = Φ1 + iΦ2, Z̃2 = Φ3 + iΦ4 , Z̃3 = Φ5 + iΦ6, Z̃4 = Φ7 + iΦ8 (A.4)

where Φi are real N =1 superfields.

In three dimensions, the N =2 gauge superfield V is a bosonic superfield while the N =1

gauge superfield Γα is a fermi superfield. In the CS matter theories studied in this paper,

integrating out the auxiliary superfield R will result in additional N = 1 superpotential

terms.
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